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Nucleation rate of kink-antikink pairs in a driven and overdamped deformable chain

David Yemélé and Timoléon C. Kofane´
Laboratoire de Me´canique, Faculte´ des Sciences, Universite´ de Yaounde´ I, Boı̂te Postale 812, Yaounde´, Cameroun

~Received 4 December 1995; revised manuscript received 16 September 1996!

The equilibrium nucleation rate of thermally activated kink-antikink pairs, in nonlinear deformable substrate
potential systems coupled to an external applied field, is determined analytically at low temperature, and in the
limit of strong damping. We focus our attention on a class of parametrized one-site potentialVRP(u,r ) whose
shape can be varied as a function of parameterr and which has the sine-Gordon shape as the particular case.
We derive the driven kink velocity as well as the average velocity of the displacement of a particle as a
function of an applied field. We show that for a given temperature this average velocity not only depends on
the external field, but also on the shape parameterr . The model is used to describe the diffusion of atoms on
metallic surfaces. Numerical values are estimated for the diffusion of hydrogen in tungsten~W! and ruthenium
~Ru! substrates.@S1063-651X~97!16505-9#

PACS number~s!: 41.20.Jb
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I. INTRODUCTION

A great deal of attention has been devoted to the stud
large amplitude excitations like soliton, kink, and oth
solitary-wave motions in one dimensional systems. Dislo
tion kinetics have been modeled by solitary waves@1,2# in
the past. The Frenkel-Kontorova model of dislocation is
well-known example. Progress has been made in the de
opment of well defined kink mechanics. Typically, the co
tinuum approximation is invoked to reduce theN-body prob-
lem resulting from the lattice dynamics of the kinks. Als
statistical mechanics of kinks has been studied. In rec
years, it has found new interest, unrelated to previous res
in the theory of kinks in dislocations. This development w
stimulated by an application of the transfer-operator te
nique to systems exhibiting solitons@3#.

The related problem of the study of the soliton becom
more difficult when the existence of perturbations is tak
into account, because their inclusion into nonlinear latt
problems always leads to nonlinear intractable partial diff
ential equations. These perturbations currently encount
in a wide variety of systems in physics, chemistry, and b
ogy @4,5# are from various sources: dissipations, impuriti
external fields, and thermal fluctuations~noise!. Using vari-
ous techniques@6–9#, many studies have been carried out
analyze their effects on the structural and dynamical beh
ior of solitons@9–11#. In general, there appears a modulati
of parameters such as velocity, mobility, soliton extensi
and amplitude. On the other hand, other studies based
different approaches@12–14# have focused on kink-antikink
pair formation. Their nucleation rate, as well as the aver
displacement velocity of a particle of the system, has a
been discussed. In this case, the presence of the soliton i
system can be appreciated as a result of thermal fluctua
favored by the applied field. One can make a further disti
tion between geometrical and thermal kinks. As a major d
tinction we recall that the latter ones are always produce
pairs and their density strongly depends on the tempera
@14#.

The first approach developed by Guyer and Miller@13# is
based on a transfer-operator technique@15# combined with
561063-651X/97/56~1!/1037~11!/$10.00
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the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy a
proximation. It has been shown that this method yields c
rect results in the high-temperature regime.

The second approach developed by Bu¨ttiker and Landauer
@14# is based on nucleation theory@16–18#. It is valid at low
temperatures and strong coupling between adjacent parti
A great feature of this approach lies in the fact that its a
swers are closely related to concepts already develope
the dislocation literature. Following this approach, Bu¨ttiker
and Landauer@14# have presented a detailed calculation
the nucleation rate of thermal kink-antikink pairs in the ove
damped sine-Gordon~SG! chain.

These results concerning the SG chain are very encou
ing, but they remain, nevertheless, limited in their applic
bility to real physical systems. In those systems, the shap
the nonlinear one-site potential may deviate considera
from that attributed to the local potential. To ameliorate t
understanding of the nonlinear excitations in real mater
and model field theories, few deformable models have
peared in the literature, such as parametrized double-
potentials @19–26#, where the choice of one or the othe
model depends on the physical system under considera
For example, in the hydrogen-bonded system, the large
placement of heavy ions can significantly modify the barr
height of the double-well potential associated with the lig
protons @27#. Also deformable SG models have been pr
posed @28–31#. The H/W adsystem~hydrogen atoms ad
sorbed on a tungsten surface! is a well-known example@32#.
The thermodynamical properties@33# as well as the chaotic
behavior@34,35# of deformable nonlinear systems have be
studied. Therefore, the study of the nucleation rate of ki
antikink pairs with a nonlinear periodic substrate poten
VRP(u,r ), whose shape can be varied continuously a
function of the parameterr and which has the SG shape as
particular case@28#, becomes interesting. We assume that
coupling between adjacent particles is strong so that ne
boring particles remain close to each other. Similarly,
confine our attention in the limit of strong damping and lo
temperatureDEN@kBT, whereDEN is the nucleus energy
kB is the Boltzmann constant, andT is the temperature. Fo
this purpose, we use the nucleation theory of Bu¨ttiker and
1037 © 1997 The American Physical Society
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1038 56DAVID YEMÉLÉ AND TIMOLÉON C. KOFANÉ
Landauer on this model to evaluate the nucleation rate.
The paper is organized as follows. In Sec. II, we pres

the model and the resulting overdamped equation of mo
of the field displacement. In Sec. III, we study the critic
nucleus and derive the nucleation rate of kink-antikink pa
The average velocity of the displacement field of a particle
well as the velocity of the driven kink are presented in S
IV. We point out in Sec. V that the model described abo
~see Sec. II! is a convenient one, well describing a real a
system situation. Experimental values of the lattice para
eters for H/W and H/Ru adsystems are used to estimate
average velocity of hydrogen atom at a surface diffusion
adsorbates induced by the electrical field. Finally, we m
concluding remarks in Sec. VI.

II. MODEL DESCRIPTION

The model under consideration consists of a chain of
teracting particles of massm, equally spaced by the lattic
constanta. These particles are coupled to each other via
nearest-neighbor interaction energyVc(f i112f i), and are
placed in an underlying nonlinear periodic substrate poten
VRP@(2p/a)f i ,r # with amplitude «s , so that the Hamil-
tonian for the model is

H5(
i

H 12 mḟ i
21Vc~f i112f i !1«sVRP@~2p/a!f i ,r #J ,

~2.1!

wheref i is the longitudinal displacement of thei th particle
from their equilibrium position along thex axis, and the
overdot is the time derivative.

It is often convenient to describe the nearest-neighbor
teraction with the Morse potential

Vc~f i112f i !5Ds$exp@2b~f i112f i !#21%2,
~2.2!

whereDs is the energy of the interaction of the particle o
cupying the nearest sites andb, characterizing the anharmo
nicity of the potential, is defined asb51/a.

In the strong coupling limit~displacive regime!, f i11 and
f i are sufficiently close together, so that~i! Vc(f i112f i)
can be approximated by a second-order Taylor expan
about zero,~ii ! (f i112f i)5a(]f/]x). Hence, the Hamil-
tonian ~2.1! can be replaced by a continuum representati

H5E dx

a H 12 mS ]f

]t D
2

1
2Vc9~0!

2 S ]f

]x D 2

1«sVRP@~2p/a!f,r #J . ~2.3!

For the sake of convenience, we use the dimensionless
placement fieldu(x,t)5(2p/a)f(x,t). Thus Eq.~2.3! be-
comes

H5E dxH 12 M S ]u

]t D
2

1
k

2 S ]u

]xD
2

1V0VRP~u,r !J ,
~2.4!
t
n
l
.
s
.
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-
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where the parametersM , k, andV0 have the dimensions o
~mass!3~length!, ~energy!3~length!, and ~energy!
3~length!21, respectively, and are defined as

M5ma/~4p!2, k[2Vc9~0!a3/~4p!25Dsa/~2p!2,

V05«s /a. ~2.5!

The dynamical behavior of a particle of a chain~in the
case of the conservative system! is a solution of the Euler-
Lagrange equation following from Eq.~2.4!:

M S ]2u

]t2 D2kS ]2u

]x2D1V0dVRP~u,r !/du50. ~2.6!

We focus our attention on the substrate poten
VRP(u,r ) introduced by Remoissenet and Peyrard@28#

VRP~u,r !5~12r !2
~12cosu!

11r 212r cosu
, ur u,1 ~2.7!

with constant amplitude and variable shape. Then, Eq.~2.6!
exhibits static kink solutions given implicitly by~see
@28,29#!

x

d8
5sgn~p2u!H ~12b2!1/2 tanh21F ~12b2!

11b2 tan2~u/2!G
1/2

2tanh21F 1

11b2 tan2~u/2!G
1/2J ~2.8a!

for 0<r,1 and

x

d9
5sgn~u2p!H @~12b2!1/2/b#tan21F ~12b2!

b21tan2~u/2!G
1/2

1tanh21F b2

b21tan2~u/2!G
1/2J ~2.8b!

for 21,r<0 with

d85j0 /b, d95j0b ~2.9!

j05~k/V0!
1/2, ~2.10!

and

b5
12ur u
11ur u

. ~2.11!

The termsd8 andd9 have the dimensions of length and giv
a measure of the pseudokink width forr>0 and r<0, re-
spectively. The antikink solutions are obtained by replac
u by 2p2uin Eqs.~2.8!. It can be shown that the energies
these static kinks~2.8! ~and antikinks! are @29#

Es58b~kV0!
1/2~12b2!21/2 tanh21~12b2!1/2, r>0

~2.12a!

Es58~kV0!
1/2~12b2!21/2 tan21@~12b2!1/2/b#, r<0.

~2.12b!

Since we deal with a dissipative and driven chain, we a
a dissipative forceMg0]u/]t, the applied fieldf , and the
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56 1039NUCLEATION RATE OF KINK-ANTIKINK PAIRS IN A . . .
fluctuating thermal forceR(x,t) in Eq. ~2.6!, so that the
equation of motion of a particle of the chain becomes

M S ]2u

]t2 D1gS ]u

]t D2kS ]2u

]x2D1dV~u,r ,F !/du5R~x,t !,

~2.13!

whereg0 is the damping constant and connected tog by

g5Mg0 . ~2.14!

The fluctuating forces describe the coupling of the chain t
heat bath and verify the following correlation function:

^R~x,t !&50,

^R~x,t !R~x8,t8!&52kBTgd~x2x8!d~ t2t8!. ~2.15!

The termV(u,r ,F) defined as

V~u,r ,F !5V0VRP~u,r !2Fu ~2.16!

is the resulting one-site potential, in the external fieldf . It is
easy to show thatf andF are related by

F5 f /2p. ~2.17!

The applied fieldf may be due to mechanical stress or to
electrical field if we are in the presence of charged partic
In this later case, the fieldf and the electrical fieldEe are
related through the equation

f5e*Ee , ~2.18!

wheree* is the coupling constant or the effective charge
each particle.

When the field is applied, the minimum~usn52np,
wheren is an integer number! of the potentialVRP(u,r ) will
be raised with respect to the adjacent potential maxim
@uin5(2n11)p#, while the adjacent potential well will be
lowered. These minima and maxima of the potential, wh
are known as Peierls valleys and Peierls hills, respectiv
will be shifted and eventually disappear when the fieldF
approachesFm(r ) defined as

Fm /V05
2&b2@~3b221!1AD#AAD23~12b2!

~5b2231AD!
,

~2.19a!

with

D59b4214b219. ~2.19b!

The Peierls valleysusn and Peierls hillsuin admit for small
values ofF and/orr the following expressions:

usn5arcsinu12np, ~2.20a!

uin5arcsinu12~n11!p, ~2.20b!

with
a

s.

f

m

h
y,

u5
4r ~F/V0!

~11r 2!G
A12~F/V0!

21~F/V0!F12S 4r ~F/V0!

~11r 2!GD 2G1/2,
~2.20c!

G5F S 12r 2

11r 2D
4

1S 4r ~F/V0!

~11r 2! D 2G1/2. ~2.20d!

For large fieldF ~but less thanFm!, those Peierls valleys an
hills can be evaluated numerically, see Fig. 1.

Since we are dealing with an overdamped chain, we w
mostly focus on the limit of high damping, such that th
inertial term in Eq.~2.13! can be neglected compared to th
frictional one. Hence, Eq.~2.13! becomes

gS ]u

]t D2kS ]2u

]x2D1dV~u,r ,F !/du5R~x,t ! ~2.21!

and the energy functional of the system is now, from t
Hamiltonian~2.4!,

E~u!5E dxH 12 kS ]u

]xD
2

1V~u,r ,F !J . ~2.22!

This energy~2.22! will play an important role in Sec. III
when evaluating the number of kink-antikink pairs in th
deformable model.

III. NUCLEATION RATE OF KINK-ANTIKINK PAIRS

It is straightforward to show that the variation of the e
ergy of the chain between two adjacent Peierls valleys~usn
andusn11! due to the application of the fieldF, evaluated
from the energy functional~2.22!, is 2pFl, where l is the
chain length. The stateusn is metastablevis a visof the state
usn11 . Thus the segment of the chain which was initially
the state of higher energyusn is likely to jump to the next
state with lower energyusn11 triggered off by stochastic
forcesR(x,t). This segment of the chain with lower energ
is connected to the segment in the Peierls valley with hig
energy through kink-antikink pairs~the nucleus!. The transi-
tion described above would be possible only if the fluctu
tions produce within the system a minimum of the ener
DEN@kBT necessary to create a critical nucleus (uN). More

FIG. 1. Plot of the maximum value of the fieldF ~in dimension-
less unitF/V0! for which the Peierls valleys exist as a function
the shape parameterr .
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precisely, if the transferred section is too small, then
attraction between the newly formed kink and antikink p
dominates the driven fieldF and the incipient nucleus col
lapses, leading to the restoration of the initial state (usn). If,
however, the transferred section is long enough, the dri
field predominates and the kink-antikink pair expands. Th
the transferred section of the chain grows. There is a crit
nucleus which is the configuration relevant to the sad
he

io
e,

s-

n

e
-

n
s
al
e

point of the surface energy. Then, in this section, we stu
this configuration~i.e., the energyDEN which has to be sur-
monted! and its stability, and derive the number of kink
antikink pairs per unit length and time.

The critical nucleus is a local extremum of the surfa
energy. Hence, it is a stationary solution (]u/]t50) of Eq.
~2.21!. SettingDu5uN2us , the first integration of the re-
sulting equation yields
1

2
j2S dDu

dx D 25~112« cosus!H 12cosDuF11
2«Du tanus
112« cosus

G1F11
2«Du tanus
112« cosus

G tanus sin Du

112« cosus~cosDu2tanus sin Du!

2
Du tanus /~112« cosus!

112« cosus~cosDu2tanus sin Du!
J , ~3.1!
ti-

l-
en-
n-

,

where

«5r /~11r 2! ~3.2!

and

j25j0
2S 11r 2

12r 2D
2H ~112« cosus!

3

cosus12«~11sin2 us!
J , ~3.3!

with energy

DEN5E dxFkS dudxD
2G . ~3.4!

Equation~3.1! describes the configuration that starts from t
stationary stateus with a decreasing lengthj which depends
on r and F. For F50, this length tends toj0b for r.0,
j0 /b for r,0 andj0 for r50 ~SG case!, whereb is given
by Eq. ~2.11!. By settingr50(«50), Eq.~3.1! leads to the
SG one@14#

~1/2!j2S dDu

dx D 2512cosDu1~sin Du2Du!tanus .

~3.5!

The first obvious remark is that Eq.~3.1! is analytically
untractable. However, on the basis of physical considerat
an approximate expression could be derived. For instanc
the absence of the applied field (F50), Eq.~3.1! yields the
stationary equation derived from Eq.~2.13!. Hence, in this
case, the solution of Eq.~3.1! is a kink @Eqs. ~2.8!# and an
antikink infinitely apart. Now, in order to derive an expre
sion of Du for small fields, we observe that~Fig. 2! the
amplitude of the critical nucleus is close to 2p and its form is
that of a kink and an antikink separated by a distancedc . It
is, therefore, natural to assume for such a solution an a
lytical expression for a kink given by Eq.~2.8!, and an anti-
kink separated by the critical distance

dc52bj0 ln@~4pF/V0!/b# for 0<r,1, ~3.6a!
ns
in

a-

dc52~1/b!j0 ln@~4pF/V0!b# for 21,r<0,
~3.6b!

which is determined by the flat-top of the solutionuN(x).
The amplitudeDum of this nucleus can be found by subs
tuting Du into Eq. ~3.1! by (2p2u) where u is a small
quantity. Following this treatment, we obtain

Dum52p2~4pF/V0!
1/2/b for 0<r,1 ~3.7a!

and

Dum52p2b~4pF/V0!
1/2 for 21,r<0. ~3.7b!

The energy (DEN) of this configuration is evaluated as fo
lows: in the absence of the applied field, the activation
ergy of kink-antikink pairs tends to the sum of the rest e
ergy of a kink and an antikink; i.e., 2Es , whereEs is given
by Eq.~2.12!. Now, if the chain is submitted to a small field

FIG. 2. Critical nucleus for a low fieldF/V051024 with the
width dc @Eq. ~3.8!# for a few r . dc decreases rapidly whenr in-
creases and tends to zero whenr approaches 1.
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56 1041NUCLEATION RATE OF KINK-ANTIKINK PAIRS IN A . . .
we have to incorporate the energy gained by the system o
calculate the energy changes associated with small cha
in the configuration. Assuming that the energy is station
at uN(x) with respect to small changes in this configuratio
the variation of the energy is to first order indF. Hence,
from Eq. ~2.22! we have

d~DEN!52dFE DuN~x!dx. ~3.8!

Using the fact that, the largest part of the critical nucleus
the flat-top~Fig. 2! whose width is given by Eqs.~3.6!, one
obtains

d~DEN!522pdcdF . ~3.9!

Integration of Eq.~3.9! yields

DEN52Es$11Fb~2pj0 /Es!ln@~4pF/V0!
1/2/~be!#%

for 0<r,1, ~3.10a!

DEN52Es$11~F/b!~2pj0 /Es!ln@b~4pF/V0!
1/2/e#%

for 21,r<0 . ~3.10b!

For values ofF close toFm(r ) and forr close to zero, the
amplitudeDum tends to zero. The critical nucleus corr
sponds to a small amplitude nucleus~SAN!. The right-hand
side of Eq.~3.1! can be accurately approximated by a thir
order Taylor expansion about zero. The integration of
resulting equation yields

DuSAN5Dum sech2~x/2j!, ~3.11a!

with

Dum53S 11r 2

12r 2D
2

tanusF122« cosus14«/cosus
125« cosus

G .
~3.11b!

Inserting Eq.~3.11a! into Eq. ~3.4!, we obtain the energy o
the small amplitude nucleus

DESAN5~24/5!~kV0!
1/2~Dum!2S 11r 2

12r 2D ~F/V0!
1/2H 1/tanus

14«~112« cosus!~F/V0!S 11r 2

12r 2D
2J 2. ~3.12!

In order to evaluateDEN for all values ofF,Fm , we have
integrated numerically Eq.~3.4! together with Eq.~3.1!. The
results are plotted in Fig. 3. We note that two facts can c
tribute to lowering the nucleus energy in this model: Fir
an increase of the applied field, such as a SG chain,
second, a potential with a sufficiently flat bottom (r→1). If
the first case corresponds, in the fact, to lower the nuc
amplitude, the second, however, corresponds to a very l
nucleus. SinceDEN corresponds to the energy of creation
a critical nucleus, this result suggests that, physically,
critical nucleus would be more easily created in syste
which can be modeled by the potential with a flat bottom
to
es
y
,

s

e

-
,
nd

s
ge

e
s

Let us turn our attention now to an examination of t
stability of the critical nucleus. To test this stability, we ad
a small perturbationdu(x,t) @which can be assumed to hav
the formdu(x,t)5dul(x)exp(2lt)# to uN(x) in an equation
derived from an energy functional, that is, Eq.~2.9!
@dE/du52g(]u/]t)#. After linearization with respect to
du, this leads to the formal Schro¨dinger eigenvalues equa
tion

L„uN~x!…dul~x!5~l/G!dul~x!, ~3.13!

whereL„uN(x)… is the linear operator given by

L„uN~x!…52j2
d2

dx2
1y„uN~x!…, ~3.14!

with the scattering potential

y„uN~x!…5@d2V~uN ,r ,F !/du2#/@d2V~uS ,r ,F !/du2#
~3.15!

and

G5~V0 /g!d2V~us ,r ,F !/du2, ~3.16!

where

d2V~us ,r ,F !/du25~12r 2!2

3
~11r 2!cosus22r cos2 us14r

~11r 212r cosus!
3 .

~3.17!

Equation~3.16! reduces toG5(V0 /g)cosus for r50 ~the
SG case!.

The energy of this state~i.e., the configuration near th
saddle! is given by

E@uN~x!1du~x,t !#5E~uN!1~ag/2!(
n

ln
Nhn

2,

~3.18!

which is to second order of the perturbationdu(x,t), evalu-
ated from the energy functional~2.22!.

FIG. 3. Activation energy barrier for the nucleation of kink
antikink pairs vs the fieldF/V0 for different values ofr . The curves
are independent of the chain characteristics.
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In the absence of the applied field (F50), the system
excitation spectrum obtained by integrating Eq.~3.13! is that
of two kinks infinitely apart. We note that whenr>0 the
system possesses one bound state with an eigenvaluln
50 corresponding to the Goldstone mode. Moreover, w
r decreases from 0 to21, internal modes appear, for in
stance, forr520.5, the spectrum possesses exactly f
bound states whereas forr520.9, the number of bound
states is 20~Figs. 4 and 5!. No unstable mode (ln,0) has
been found.

In the presence of the fieldF, one notes the positive ei
genvalues and a negative eigenvalue (l0

N) corresponding to
the stable and unstable modes, respectively. The presen
the unstable mode (l0

N,0) results from the application o
the fieldF. This mode is of great importance in the form
tion of kink-antikink pairs. In fact, from Eq.~3.18!, one can
make some remarks. In the presence of perturbations,
energy near the saddle increases in the direction of all st
eigenmodes (ln

N.0) and remains constant in the direction
the Goldstone mode while it decreases in the direction of
unstable mode. If the amplitude of this modeh0 is negative,
we assume that the contraction of the critical nucleus lead
restoration of the initial stateus . When this amplitude is
positive, the critical nucleus expands leading to the form
tion of an independent pair of a kink and an antikink.

We now look at the number of kink-antikink pairs creat
per unit time and length using the approach of Brinkm
@16#, Landauer and Swansom@17#, and Langer@18#, ~the
BLSL approach! ~see Ref.@14#!. We start with the Fokker-
Planck equation derived from Eqs.~2.15! and ~2.21!

]P

]t
1E S dxa D S d j „u~x!…

du~x! D50, ~3.19!

with

j ~u!52S 1

gaD FdEdu
P1kBTS dP

du D G , ~3.20!

FIG. 4. Localized modes of the system’s excitation spectrum
the presence of the kink (F50) ~dashed curve!. The full curve
representsv r5(12r )/(11r ).
n

r

of

he
le

e

to

-

n

where j (u) and P(u) denote the current and distributio
probability, respectively. The equilibrium probability distr
bution at the stateuN is

P~uN!5P0 exp„2E~uN!/kBT…, ~3.21!

whereP0 is the normalization factor.
The BLSL approach consists of a correction factorg(u)

to the local equilibrium distribution probability

P~u!5g~u!exp„2E~u!/kBT…. ~3.22!

n

FIG. 5. Eigenvalues of the perturbations of the critical nucle
as a function ofF/V0 for ~a! r520.5, ~b! r50.5, and ~c! r
50.9.



e
he

ra
e
oh

te

.

ir

-

io

f a

r
IV
in.
tion

ns,
nd
e
ar-
ent
stic

ss-
by

re
his
p-
k
e
-

ti-
nce
c-
an

a
ty.
on

the

56 1043NUCLEATION RATE OF KINK-ANTIKINK PAIRS IN A . . .
Substituting Eq.~3.22! into Eq. ~3.20! one obtains

j ~u!52~kBT/ga!S dg

duD exp@2E~u!/kBT#. ~3.23!

Near the saddle, this expression can be rewritten as

j n~$h%!52~kBT/ga!S dg

dhn
DexpF2SE~uN!

1~ag/2!(
n

ln
Nhn

2D Y kBTG , ~3.24!

where we have used the quadratic approximation for the
ergy E(u1du). In the steady state, the calculation of t
number of kink-antikink pairs per unit time and lengthj N is
similar to that performed by Bu¨ttiker and Landauer@14#.
Using the same approach, Eq.~3.24! yields

j N5S G

2p D 3/2~g/k!1/2~ ul0
Nu/G!1/2)

n.1

p21

3~G/ln
N!1/2~DEN /kBT!1/2~Q!exp~2DEN /kBT!,

~3.25!

where j N is the nucleation rate,ln
N is the eigenvalue of the

nonuniform state,p the number of bound states of the ope
tor L„u(x)… and Q the product of the eigenvalues of th
nonlocalized eigenmodes of the critical nucleus. Using B
and Sommerfeld’s approximation quantization rule@14,36#,
we obtain

ln~Q2!5E
1

1`

~rs2rN!ln~l/G!d~l/G!, ~3.26!

wherers andrN are the density of state of the uniform sta
us and nonuniform stateuN , respectively, given by

rs5~1/2pj!E
2`

1`

dx@1/~l/G21!1/2# ~3.27a!

and

rN5~1/2pj!E
2`

1`

dx$1/@l/G2n„u~x!…#1/2%.

~3.27b!

The factorQ is a function of the applied fieldF and the
shape parameterr . Its numerical evaluation is plotted in Fig
6. From the spectrum ofL„u(x)… and the factorQ, we are
able to evaluate the nucleation rate of kink-antikink pa
j N .
From Eqs.~3.25!, one can make some comments:~i!

The nucleation ratej N of the kink-antikink pairs are tempera
ture and deformable parameter dependent,~ii ! their expres-
sion @;T21/2exp(2DEN /kBT)# allows us to say that it is an
increasing function of temperature, and~iii ! due to math-
ematical difficulties, it is not possible to predict its behav
as a function ofr , even if its numerical evaluation for a few
values ofr shows an increase withr . This numerical analy-
n-

-

r

s

r

sis will be checked indirectely from the average velocity o
particle in the chain which has the same behavior asj N .

In order to relate this result (j N) to the physical paramete
easily experimentally accessible, we will evaluate in Sec.
the average displacement velocity of a particle in the cha
This question has been of interest in the theory of disloca
for more than three decades@37#.

IV. AVERAGE DISPLACEMENT VELOCITY
OF PARTICLES

At low temperatures and in the absence of fluctuatio
the particles undergo small amplitude oscillations arou
their equilibrium position. In a macroscopic viewpoint, th
system is at equilibrium. A remarkable displacement of p
ticles comes from its transition from one site to an adjac
one, due to the passing of the soliton triggered by stocha
forces. The average velocity of this displacement^]u/]t& is
thus determined by the number of kinks and antikinks pa
ing the particle per unit time. Hence, this velocity is given

^]u/]t&52p~2v j N!1/2, ~4.1!

where v is the kink velocity. The solution sketched he
established in the SG chain case is still valid, even in t
model. Indeed, Eq.~4.1! has been obtained by the assum
tion that in the limit of heavy damping the kink-antikin
collision is destructive. Now, the kinklike solution of th
unperturbed equation~2.4! interacts strongly with the anti
kink ~in the absence of perturbations! @29#, and this interac-
tion can lead to the total destruction of both kink and an
kink or to the formation of the breather. Then, the prese
of perturbations should contribute to intensify this intera
tion. Consequently, any collisions between a kink and
antikink in the limit of heavy damping is destructive.

Equation~4.1! shows that to find the average velocity of
particle of the chain, we have thus to find the kink veloci
To evaluate this velocity, we now investigate the transiti
connecting two minimaus(r ,F) and us(r ,F)12p of the
potential V(u,r ,F) of the traveling-wave formu(x1vt)

FIG. 6. Product of the eigenvalues of the stateus divided by the
product of the eigenvalues of the nonlocalized eigenvalues of
critical nucleus vs (F/V0) for a few values ofr .
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5u(z) of Eq. ~2.1! in the absence of stochastic forces whe
v is the propagational velocity alongx. u(z) verifies the
equation

k~d2u/dz2!2gv~du/dz!2dV~u,r ,F !/du50. ~4.2!

In the absence of the external fieldF and damping, any so-
lution of this equation can move with any constant veloci
between zero and the sound velocity on the chain. Howev
in the driven and damped chain, the fieldF accelerates the
initial motion of the kink which becomes uniform when th
kink acquires a final velocityv determined by the balance
between the total energy loss due to dissipation in the p
ticle picture and the total work done by the external field. F
small fields, the velocity is linear toF. In this case, the
soliton mobility can be derived in a most simple manner b
@38#

v/F[m52pk/~gEs!, ~4.3!

whereEs is the kink rest energy given by Eqs.~3.10!. The
plot of m(r )is given in Fig. 7. The increase ofr enhances the
kink mobility. To make this physical behavior more clea
we find the velocityv in the whole range ofF, we select the
appropriated value ofgv corresponding to the transition
from one Peierls with zero initial velocity to an adjacent on
with zero final velocity. The result forv(r ,F) is of the form
@39#

v~r ,F !5v0g~F/V0 ,r !, ~4.4!

wherev05(kV0)
1/2/g is a unit of velocity and the function

g is defined by the curve plotted in Fig. 8. For small field
g is linear inF and increases monotonically with an increa
ing field to a valuev*5v0g* at F5Fm . For example, for
r520.5, g*52.01; for r50.5, g*53.2; andg*51.19 for
r50 @14#. The stability of this driven kink has been wel
established@39#.

We now have all the information necessary to calcula
the velocity of particles in the chain in the presence of a fie
F. The results plotted in Figs. 9 and 10 in units of (V0 /g)
are based on a computational evaluation of Eqs.~3.25! and
~4.1!, and depend on reduced temperaturet5kBT/(V0k)

1/2

and the shape parameterr . Figure 10 shows that the averag

FIG. 7. The driven kink mobility in unit ofm05(k/V0)
1/2/g

plotted as a function of the shape parameterr .
r,

r-
r

y

,
-

e
d

velocity with which a particle advances is sensitive tor and
as r increaseŝ ]u/]t& increases. It is, however, difficult to
generalize this behavior for the mean velocity as a funct
of r because the results plotted in Fig.~10! refer to only a
few values ofr . But, it is physically possible to predict a
increase in the mean velocity withr since, as shown in the
preceding section, the total energy need to nucleate a k
antikink pair decreases asr increases. Then, it would b
easier to create a kink in the chain where the potential ha
flat bottom (r→1) than that where the potential has a fla
top (r→21).

V. APPLICATION TO THE DIFFUSION OF HYDROGEN
ATOMS ON METALLIC SURFACES

The model described in Sec. II has applications to
problem of surface diffusion of atoms and molecules a
sorbed on metal surfaces. This problem is an odd one
still attracts the attention of many physicists since the res
so far obtained are not satisfactory. This is due to the f
that there are many contradictions or gaps in existing m
surements@40#. The research in the field has been carried
analytically and experimentally with computational method

Indeed, the model of Sec. II may be viewed as a o
dimensional chain of adatoms with a deformable poten
VS(f,r ). This potential is produced by the interaction of a
adatom with substrate atoms, where the parameterr could
account for the temperature dependance of the substra
for the geometry of the surface of the metallic substrate.
instance, an estimate for the H/W adsystem yieldsr.20.3
@32#. Thus, we apply the results of the above analytical stu
to estimate the kink mobility and its diffusion constant~un-
der the effects of thermal fluctuations!; at last, the mean dis
placement velocity of a hydrogen atom on a Ru and W s
strates induced by the applied electrical fieldEe is
investigated.

We assume that a unit cell contains only one adatom
that the lattice parameters~D, a, «s , and the damping coef
ficient g0! do not depend on the temperature or the exter
field. We focus our attention on two adsystems H/W a
H/Ru, where available data exist. The diffusion of hydrog
atoms on various planes of W and Ru has been analy

FIG. 8. Increase of the propagational velocity in unit ofv0 of
the driven kink with increase ofF/V0 for different values ofr .
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using the field ion shadowing method@40,41# and the laser
induced desorption-refilling method@40,42#. The measure-
ments indicated that on these metallic substrates, the po
tial barrier «s varies between 0.10 and 0.50 eV. Also t
coupling constant or effective chargee* transferred when an
atom is displaced from one equilibrium site to the next o
generally differs from the charge of the adatom particle.
the case of the diffusion of hydrogen atoms, the meas
ments indicated thate*50.1e–0.7e, wheree is the protonic

FIG. 9. Average velocity of particleŝ]u/]t&[^u̇& in a dimen-
sionless unit as a function of the applied field: for different te
peraturet5kBT/(kV0)

1/2 with ~a! r520.5, ~b! r50.5, and~c! r
50.9.
n-

e
n
e-

charge@32#. Taking for the lattice parametersa53 Å, Ds

52.35 eV, «s50.11 eV, m51 uma, e*50.5e, and r.
20.3, which is comparable to that existing in W and Ru, a
g05631013 s21, we obtain the following values of quanti
ties:

V0.3.6231022 eV Å21, g57.62310215 s21, and

k53.5731021 eV Å.

Here we have taken for the damping coefficientg0 the value
which is equal to that of the proton migration in hydroge
bonded solids@43,44#.

Before analyzing the average displacement velocity of
drogen atoms on Ru and W substrates, we first look at
motion of the driven kink in the electrical fieldEe . As
shown in Sec. II,Ee should be less than the critical fiel
Ec(r ), which is an increasing function ofr @see Fig. 1,
where Ee /EC(r50)5F/V0 with Ec(r50)52.35
3109 V/m#. For the deformable parameterr.20.3, the
critical electrical field has a valueEc54.623109 V/m. If the
field Ee is very small (Ee!Ec), the driven kink velocityv is
linear with respect toEe . Hence,v5mEe , wherem is a kink
mobility. Figure 7 shows the variation ofm as a function of
r , where the characteristic mobilitym0 has a valuem0

-

FIG. 10. Variation of average velocity of particles withF for a
few values of shape parameterr with ~a! t50.2, ~b! t50.3, which
increasesF/V0 for different shape parameterr .
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55.2131022 cm2 s21 V21, corresponding to the characte
istic diffusion coefficient D054.2631024 cm2 s21 at T
5298 K which follows from the modified Einstein relatio
D5mkBT/(2pe* ). For r.20.3, the diffusion coefficient
has a valueD53.431024 cm2 s21 comparable to that ob
tained in H/W and H/Ru adsystems since the experime
values show that D varies from 1025 cm2 s21 to
1023 cm2 s21 @40#.

Also interesting in studying diffusion of hydrogen atom
on metallic surfaces is the mean displacement velocity
hydrogen atomŝ]f/]t& induced by the electrical field. Not
that ^]f/]t&5(a/2p)^]u/]t&; this is given by Eq.~4.1!.
Our numerical applications are carried out for Ru and
substrates where we have taken the particular valuer.
20.3. The results are shown in Fig. 11 for three values
the temperatureT. Theses figures show that^]f/]t& rises by
several orders of magnitude in a small electrical field ran
around a particular value@see Fig. 11~a!#, so that the thresh
old for energy localization could be reach. This suggests
the process of surface diffusion could be initiated by
energy-localization phenomenon, which is due to nonlin
effects. This evidences the importance of collective mot
of adatoms~hydrogen atoms! observed at the time of exper
mental studies of surface diffusion@32#.

VI. CONCLUSION

In this paper, we have studied the effect of a poten
with variable shape on the nucleation rate of kink-antiki
pairs in a one-dimensional chain following the Bu¨ttiker and
Landauer theory@14#. The mean advantage of this potent
lies in the fact that it can be used to describe a large amo
of physical systems. As a result, an appropriate choice of
shape parameterr enables us to employ a suitable form
the shape close to the system under consideration suc
epitaxial or incommensurate structure@32# in crystals and
other various systems. The nucleation ratej N has been ob-
tained in the formVe2DEN(r ,F)/kBT, in agreement with the
results of Ref.@45#. As in the SG case the prefactorV is
proportional toT21/2 independent of the shape parameterr ,
however, it depends strongly on this parameter. Con
quently, the nucleation rate of kink-antikink pairs not on
depends on the external field, but also on the shape pa
F

.

-

al

f

f

e

at
n
r
n

l

l
nt
e

as

e-

m-

eter r . This investigation is limited to the fieldF@n0kBT
where nucleation theory is valid. Heren0 designates the~an-
ti!kink mean density. At last, the velocity of the driven kin
has been derived. As a consequence of ther dependence of
the kink width@28#, in response to an external field, the lar
kink (r→1) moves more rapidly than the short one (r→
21). This may be understood if we appeal to the fact t
the short kink interacts with the particles of the chain, wh
the large kink does not see the particles@46,47#.

FIG. 11. Variation of̂ ]f/]t&[^ḟ& (m/s) as a function of the
electrical field for three values of the temperature;~1! T5298 K,
~2! T5393 K, ~3! T5493 K: ~a! for small field (Ee!Ec), ~b! for
large field (Ee<Ec).
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