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Nucleation rate of kink-antikink pairs in a driven and overdamped deformable chain

David Yemdé and Timol®n C. Kofane
Laboratoire de Meanique, Facultedes Sciences, Universitie Yaounde, Boite Postale 812, Yaounhgd€ameroun
(Received 4 December 1995; revised manuscript received 16 Septembegr 1996

The equilibrium nucleation rate of thermally activated kink-antikink pairs, in nonlinear deformable substrate
potential systems coupled to an external applied field, is determined analytically at low temperature, and in the
limit of strong damping. We focus our attention on a class of parametrized one-site potpfialr) whose
shape can be varied as a function of parametand which has the sine-Gordon shape as the particular case.
We derive the driven kink velocity as well as the average velocity of the displacement of a particle as a
function of an applied field. We show that for a given temperature this average velocity not only depends on
the external field, but also on the shape parametdihe model is used to describe the diffusion of atoms on
metallic surfaces. Numerical values are estimated for the diffusion of hydrogen in tufgstand ruthenium
(Ru) substrates[S1063-651X97)16505-9

PACS numbd(s): 41.20.Jb

I. INTRODUCTION the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy ap-
proximation. It has been shown that this method yields cor-
A great deal of attention has been devoted to the study afect results in the high-temperature regime.
large amplitude excitations like soliton, kink, and other The second approach developed bitter and Landauer
solitary-wave motions in one dimensional systems. Dislocal14] is based on nucleation thedry6—18. It is valid at low
tion kinetics have been modeled by solitary wayg&®] in  temperatures and strong coupling between adjacent particles.
the past. The Frenkel-Kontorova model of dislocation is aA great feature of this approach lies in the fact that its an-
well-known example. Progress has been made in the devetwers are closely related to concepts already developed in
opment of well defined kink mechanics. Typically, the con-the dislocation literature. Following this approach;ttier
tinuum approximation is invoked to reduce tRebody prob- and Landauef14] have presented a detailed calculation of
lem resulting from the lattice dynamics of the kinks. Also, the nucleation rate of thermal kink-antikink pairs in the over-
statistical mechanics of kinks has been studied. In recerdamped sine-Gordo(8G) chain.
years, it has found new interest, unrelated to previous results These results concerning the SG chain are very encourag-
in the theory of kinks in dislocations. This development wasing, but they remain, nevertheless, limited in their applica-
stimulated by an application of the transfer-operator techbility to real physical systems. In those systems, the shape of
nique to systems exhibiting solitof3]. the nonlinear one-site potential may deviate considerably
The related problem of the study of the soliton becomedrom that attributed to the local potential. To ameliorate the
more difficult when the existence of perturbations is takenunderstanding of the nonlinear excitations in real materials
into account, because their inclusion into nonlinear latticeand model field theories, few deformable models have ap-
problems always leads to nonlinear intractable partial differpeared in the literature, such as parametrized double-well
ential equations. These perturbations currently encountereegbtentials[19—-26, where the choice of one or the other
in a wide variety of systems in physics, chemistry, and biol-model depends on the physical system under consideration.
ogy[4,5] are from various sources: dissipations, impurities,For example, in the hydrogen-bonded system, the large dis-
external fields, and thermal fluctuatiofiise. Using vari-  placement of heavy ions can significantly modify the barrier
ous techniquef6—9], many studies have been carried out toheight of the double-well potential associated with the light
analyze their effects on the structural and dynamical behayprotons[27]. Also deformable SG models have been pro-
ior of solitons[9—11]. In general, there appears a modulationposed[28—31. The H/W adsystemhydrogen atoms ad-
of parameters such as velocity, mobility, soliton extensionsorbed on a tungsten surfadge a well-known examplé32].
and amplitude. On the other hand, other studies based ofhe thermodynamical properti¢83] as well as the chaotic
different approachefl2—14 have focused on kink-antikink behavior[34,35 of deformable nonlinear systems have been
pair formation. Their nucleation rate, as well as the averagstudied. Therefore, the study of the nucleation rate of kink-
displacement velocity of a particle of the system, has als@ntikink pairs with a nonlinear periodic substrate potential
been discussed. In this case, the presence of the soliton in tMgp(u,r), whose shape can be varied continuously as a
system can be appreciated as a result of thermal fluctuatiorignction of the parametar and which has the SG shape as a
favored by the applied field. One can make a further distincparticular cas¢28], becomes interesting. We assume that the
tion between geometrical and thermal kinks. As a major dis€oupling between adjacent particles is strong so that neigh-
tinction we recall that the latter ones are always produced ifboring particles remain close to each other. Similarly, we
pairs and their density strongly depends on the temperatur@onfine our attention in the limit of strong damping and low
[14]. temperatureAEy>kgT, whereAEy is the nucleus energy,
The first approach developed by Guyer and Mi[l&€8] is kg is the Boltzmann constant, afdis the temperature. For
based on a transfer-operator techniq@8] combined with  this purpose, we use the nucleation theory ofttikar and
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Landauer on this model to evaluate the nucleation rate.  where the parameteid, k, andV, have the dimensions of
The paper is organized as follows. In Sec. Il, we presentmas$Xx (length, (energyX(length, and (energy

the model and the resulting overdamped equation of motiorx (length 2, respectively, and are defined as

of the field displacement. In Sec. Ill, we study the critical

nucleus and derive the nucleation rate of kink-antikink pairs. M=mal/(4m)?, k=2V{(0)a%(4m)*=Dgal(2m)?,

The average velocity of the displacement field of a particle as

well as the velocity of the driven kink are presented in Sec. Vo=¢sl/a. (2.5

IV. We point out in Sec. V that the model described above . . . .

(see Sec. llis a convenient one, well describing a real ad- The dynamical beh.awor of a part|c|e.of a chdin the

system situation. Experimental values of the lattice param(-:ase of the conservative .syst)em a squt|.on of the Euler-

eters for H/W and H/Ru adsystems are used to estimate tHe?9range equation following from Eg2.4):

average velocity of hydrogen atom at a surface diffusion of 92u 92u

adsorbates induced by the electrical field. Finally, we make M( )—k —

concluding remarks in Sec. VI. X

W +V0dVRp(U,r)/dU:0. (26)

We focus our attention on the substrate potential

Il. MODEL DESCRIPTION Vge(u,r) introduced by Remoissenet and Peyrg2]
The model under consideration consists of a chain of in- (1—cosu)
teracting particles of mags, equally spaced by the lattice Vra(U,r)=(1-r)2 17127 2r cosu’ Irl<1 (2.7)

constanta. These particles are coupled to each other via the

nearest-neighbor interaction energfy(¢;,1— ¢;), and are  with constant amplitude and variable shape. Then,(E®)
placed in an underlying nonlinear periodic substrate potentiaéxhibits static kink solutions given implicitly by(see
Vrd (27/a) ¢ ,r] with amplitude e, so that the Hamil- [28 29)

tonian for the model is

X (1_32) 1/2
= — l_B2)1/2 tanh—l
1 . d’ sgrim u)[( 1+ B2 tarf(u/2
H=S |5 Me? Vel 1= ) +eVed (2/a) 6y 1], priamu)
i 1 1/2
2.1 - i1
2.1 tanh T B @ (ui2) ] (2.8a
where ¢, is the-l_on.gltudlnal.@splacement of tr!lth particle for 0<r<1 and
from their equilibrium position along the& axis, and the
overdot is the time derivative. X (1-p2) w2
It is often convenient to describe the nearest-neighbor in- —; =sgn(u—=){ [(1— B Y gltan Y| —————=
: . . d B2+ tarf(u/2)
teraction with the Morse potential
B2 1/2
—1
Ve(bis1— d1)=D{exd —b(¢i 1~ $)]1-1}7, 22 +tanh B tarf(ui2) ] (2.8b
for —1<r=<0 with
whereDyg is the energy of the interaction of the particle oc-
cupying the nearest sites ahd characterizing the anharmo- d'=¢&,/B, d"'=¢&8 (2.9
nicity of the potential, is defined ds=1/a.
In the strong coupling limitdisplacive regimg ¢, ; and &o=(kIVo)™, (2.10
¢, are sufficiently close together, so th@t V.(®i.1— ¢i)
can be approximated by a second-order Taylor expansioﬂ”d
about zero(ii) (¢i+1— &i) =a(dpl/ox). Hence, the Hamil- B
: . . 1—]r|
tonian(2.1) can be replaced by a continuum representation = T (2.11)
r
2 " 2
H :f d_x {E m(ﬁ) + 2V(0) (@) The termsd’ andd” have the dimensions of length and give
a |2 1\t 2 22 a measure of the pseudokink width for0 andr=0, re-

spectively. The antikink solutions are obtained by replacing
+sSVRF[(27r/a)¢,r]} _ 2.3 u by 27— gin _Eqs.(2.8). It can t_)e_ shown that the energies of
these static kink$2.8) (and antikink$ are[29]

For the sake of convenience, we use the dimensionless dis- Es=88(kVo)"41—p%) Y2 tanh }(1- gAY r=0
placement fieldu(x,t) = (2/a) $(x,t). Thus Eq.(2.3) be- (2.129

comes E.=8(kVo)Y41- )Y tan 4 (1- g1V, r=0.

1 ou\? k [au\? (2.12b
H:j dx[i M(E) +§<5 +V0VRP(U,r)J,

Since we deal with a dissipative and driven chain, we add
(2.4  a dissipative forceM yydu/dt, the applied fieldf, and the
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fluctuating thermal forceR(x,t) in Eq. (2.6), so that the
equation of motion of a particle of the chain becomes

2

Ma2u u kau dVi F)/du=R
el v Bl kS e R A CH )/du=R(x,1),
(2.13
where vy, is the damping constant and connectedytoy
Y=Myo. (2.19

The fluctuating forces describe the coupling of the chain to & ol v v vy e e e
0

heat bath and verify the following correlation function:
(R(x,1))=0,
(ROX,DR(X',t")y=2kgTys(x—x")8(t—t"). (2.15
The termV(u,r,F) defined as

V(u,r,F)=VoVreu,r)—Fu (2.16

is the resulting one-site potential, in the external fikldt is
easy to show that andF are related by

F=f/2. (2.17

1039

FIG. 1. Plot of the maximum value of the fied (in dimension-
less unitF/V) for which the Peierls valleys exist as a function of
the shape parameter

27112
QZ%\/1—(F/V0)7+(F/V0){1—(%)} :
(2.209
oo (1—r2 4 4|r(|:/v0))T/2 (2.209

1412 (1+r?) '

For large fieldF (but less thark,), those Peierls valleys and

The applied field may be due to mechanical stress or to anhills can be evaluated numerically, see Fig. 1.
electrical field if we are in the presence of charged particles. Since we are dealing with an overdamped chain, we will

In this later case, the fielfl and the electrical fieldE, are
related through the equation

f=e*E,, (2.18

wheree* is the coupling constant or the effective charge of

each particle.
When the field is applied, the minimurfug,=2n,
wheren is an integer numbgiof the potentiaMgg(u,r) will

be raised with respect to the adjacent potential maximum
[Uuin=(2n+ 1) 7], while the adjacent potential well will be

lowered. These minima and maxima of the potential, which
are known as Peierls valleys and Peierls hills, respectively

will be shifted and eventually disappear when the field
approache$ ,(r) defined as

£y _2v2B7(32- 1)+ VAINJA-3(1- 89
mee (58°—3+A) !
(2.19a

with
A=9B%—14B%+09. (2.19b

The Peierls valleysig, and Peierls hillay;, admit for small
values ofF and/orr the following expressions:

Ug,=arcsin6+2nr, (2.20a

uj,=arcsing+2(n+ 1), (2.20bh

with

mostly focus on the limit of high damping, such that the
inertial term in Eg.(2.13 can be neglected compared to the
frictional one. Hence, Eq2.13 becomes

Ju ) Ju

"ot M e

and the energy functional of the system is now, from the
Hamiltonian(2.4),

E _J’ q 1 " au
(W= | dxj5 k| —
This energy(2.22 will play an important role in Sec. Il

when evaluating the number of kink-antikink pairs in the
deformable model.

+dV(u,r,F)/du=R(x,t) (2.2))

2

+V(u,r,F)]. (2.22

IIl. NUCLEATION RATE OF KINK-ANTIKINK PAIRS

It is straightforward to show that the variation of the en-
ergy of the chain between two adjacent Peierls vallens
andug,, 1) due to the application of the fiell, evaluated
from the energy functional2.22), is 27FI, wherel is the
chain length. The state,, is metastableis a visof the state
Usns1- Thus the segment of the chain which was initially at
the state of higher energys, is likely to jump to the next
state with lower energys,,, triggered off by stochastic
forcesR(x,t). This segment of the chain with lower energy
is connected to the segment in the Peierls valley with higher
energy through kink-antikink pairghe nucleus The transi-
tion described above would be possible only if the fluctua-
tions produce within the system a minimum of the energy
AE\>KkgT necessary to create a critical nucleug). More
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precisely, if the transferred section is too small, then thepoint of the surface energy. Then, in this section, we study
attraction between the newly formed kink and antikink pre-this configuration(i.e., the energ\AEy which has to be sur-
dominates the driven fiel& and the incipient nucleus col- monted and its stability, and derive the number of kink-
lapses, leading to the restoration of the initial statg)( f, antikink pairs per unit length and time.

however, the transferred section is long enough, the driven The critical nucleus is a local extremum of the surface
field predominates and the kink-antikink pair expands. Thugnergy. Hence, it is a stationary solutiofu(dt=0) of Eq.

the transferred section of the chain grows. There is a critical2.21). SettingAu=uy—us, the first integration of the re-
nucleus which is the configuration relevant to the saddlesulting equation yields

1 Aul1s 2eAu tanug 2gAu tanug . in A
1 ,/dAu\? Lio cosaU LT 10, COSUg 1+2e COSUg ants sin au
2 & ax ] ¢ & CosU) 1+2& cosug(cosAu—tan ug sin Au)
Au tanug/(1+2¢ cosuy) a.q
1+2¢ cosug(cosAu—tanug sin Au) @D
|
where 0c=—(1B)¢& In[(4wF/Vy)B] for —1<r=Q0,
) (3.6b
e=r/(1+r%) (3.2
which is determined by the flat-top of the solutiog(x).
and The amplitudeAu,, of this nucleus can be found by substi-
2\ 2 3 tuting Au into Eq. (3.1) by (27— #) where 8 is a small
§2=¢2 1+r (1+2¢ cosuy) (3.3 quantity. Following this treatment, we obtain
0l1-r?] |cosugt2e(1+sirf ug)|’ '
Aun=27—(47FIVy)Y%B for O<r<1 (3.79
with energy
and
2
AEN=f dx k(&) } (3.4 Aug=2m—B(4TFIVy)Y2 for —1<r<0. (3.7b

Equation(3.1) describes the configuration that starts from theThe energy AEy) of this configuration is evaluated as fol-
stationary statels with a decreasing lengtéiwhich depends 10ws: in the absence of the applied field, the activation en-
onr andF. For F=0, this length tends tg,8 for r>0, erdy of kink-antikink pairs tends to the sum of the rest en-
£o/B for r<0 andé, for r=0 (SG cask whereg is given ~ €rgy of a kink and an antikink; i.e.,E%, wherek; is given

by Eq.(2.11). By settingr=0(s=0), Eq.(3.1) leads to the DY EQ.(2.12. Now, if the chain is submitted to a small field,

SG one[14]

7.5
2
(1/2)§Z(dA—u) =1-cosAu-+(sin Au—Au)tanu
dX S - (1)
(35) (2)

5_

The first obvious remark is that E¢B.1) is analytically

untractable. However, on the basis of physical consideration: 5 t L @) 1=z 40,5
an approximate expression could be derived. For instance, i < - @ 1= 0
{4) r=z ~0.5

the absence of the applied fiel& £0), Eq.(3.1) yields the r
stationary equation derived from E(.13. Hence, in this 2.5~
case, the solution of Ed3.1) is a kink[Egs.(2.8)] and an
antikink infinitely apart. Now, in order to derive an expres-
sion of Au for small fields, we observe thdFig. 2) the
amplitude of the critical nucleus is close t@ 2nd its form is ol '
that of a kink and an antikink separated by a distaficelt
is, therefore, natural to assume for such a solution an ans
lytical expression for a kink given by E¢2.8), and an anti-
kink separated by the critical distance FIG. 2. Critical nucleus for a low fieldF/Vy=10"* with the
width &, [Eq. (3.8)] for a fewr. &, decreases rapidly whenin-
6.=— P& IN[(47FIVy)/B] for 0=r<1, (3.63 creases and tends to zero wheapproaches 1.

5) r=-0.9
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we have to incorporate the energy gained by the system ortc 25

calculate the energy changes associated with small change

in the configuration. Assuming that the energy is stationary & 20p

at uy(x) with respect to small changes in this configuration, ;:,T

the variation of the energy is to first order @i~. Hence, x 15

from Eq.(2.22 we have \uz
Q10

d(AEyN)= —de Aupn(x)dx. (3.8
Using the fact that, the largest part of the critical nucleus is o

the flat-top(Fig. 2 whose width is given by Eq$3.6), one
obtains

FA,

d(AE\)=—276.dF. (3.9
FIG. 3. Activation energy barrier for the nucleation of kink-
Integration of Eq.(3.9) yields antikink pairs vs the fieldF/V, for different values of . The curves
are independent of the chain characteristics.
AEN=2EJ1+FB(2méyEQ)IN[(47FIV) Y2 (Be)]}
Let us turn our attention now to an examination of the
for 0<r<1, (3.10a8 stability of the critical nucleus. To test this stability, we add
a small perturbatiodu(x,t) [which can be assumed to have
AEN=2E{{1+(F/B)(2m&y/Eg)IN[ B(4mFIV,) Y3 e]} the forméu(x,t) = su, (x)exp(=At)] to uy(x) in an equation
derived from an energy functional, that is, E@.9
for —1<r<0. (3.10b [SE/Su=—y(dulat)]. After linearization with respect to
du, this leads to the formal Schiinger eigenvalues equa-
For values of close toF ,(r) and forr close to zero, the tion
amplitude Au,, tends to zero. The critical nucleus corre-
sponds to a small amplitude nucle(®AN). The right-hand L(un(x))8uy (x) = (NIT) 8uy(x), (3.13

side of Eq.(3.1) can be accurately approximated by a third- . . .
order Taylor expansion about zero. The integration of theWhereL(uN(X)) Is the linear operator given by

resulting equation yields d2
L(Un(x))= =& —— +v(un(x)), (3.19
Augan=Auy, sech(x/2¢), (3.113 N dx* N
with with the scattering potential
1472)2 1- 26 COSUL+48/COS U, v(un(x))=[d?V(uy,r,F)/du?]/[d*V(ug,r,F)/du?]
=3 — 3.1
Aup, 3(1—r2 tan us 1-52 cosu, (3.19
(3.11p and
Inserting Eq.(3.113 into Eg. (3.4), we obtain the energy of I'=(Vo/y)d®V(ug,r,F)/du?, (3.16
the small amplitude nucleus
where
1/2 2 1+r2 1/2
AEgan=(24/5(kVy) " Auy,) 12 (F/Vg) ™% 1tanug dZV(uS,r,F)/du2=(1—r2)2
4r2\2)2 (1+r2)cosug—2r cog ug+4r
+4e(1+2¢ COSUS)(F/VO)(W> ] (3.12 (1+r2+2r COSUS)3 .
(3.17

In order to evaluatd Ey for all values ofF<F,, we have

integrated numerically Eq3.4) together with Eq(3.1). The  Equation(3.16 reduces tol'=(V,/y)cosug for r=0 (the
results are plotted in Fig. 3. We note that two facts can conSG casg

tribute to lowering the nucleus energy in this model: First, The energy of this staté.e., the configuration near the
an increase of the applied field, such as a SG chain, angaddle is given by

second, a potential with a sufficiently flat bottom—¢1). If

the first case corresponds, in the fact, to lower the nucleus N 2
amplitude, the second, however, corresponds to a very large Elun()+ 5U(X't)]:E(uN)+(a7/2); N 70
nucleus. Sinc& Ey corresponds to the energy of creation of (3.18
a critical nucleus, this result suggests that, physically, the

critical nucleus would be more easily created in systemsvhich is to second order of the perturbatiéa(x,t), evalu-
which can be modeled by the potential with a flat bottom. ated from the energy function&2.22).
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FIG. 4. Localized modes of the system’s excitation spectrum in
the presence of the kinkF(=0) (dashed curve The full curve
representso, = (1—r)/(1+r).
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In the absence of the applied fieléF€0), the system

excitation spectrum obtained by integrating E}13) is that -1.5E
of two kinks infinitely apart. We note that whar=0 the 2E
system possesses one bound state with an eigenwglue o
=0 corresponding to the Goldstone mode. Moreover, when ‘2'5;_
r decreases from 0 te-1, internal modes appear, for in- -3(;

stance, forr=-0.5, the spectrum possesses exactly four
bound states whereas foe=—0.9, the number of bound (b)
states is 2QFigs. 4 and » No unstable mode)(,<0) has
been found.

In the presence of the field, one notes the positive ei-

1 CONT INUOUS SPE CTRUM

genvalues and a negative eigenvalm%‘)( corresponding to 05 _
the stable and unstable modes, respectively. The presence ¢ s
the unstable mode)\(;‘<0) results from the application of 0

the fieldF. This mode is of great importance in the forma-
tion of kink-antikink pairs. In fact, from Eq.3.18), one can
make some remarks. In the presence of perturbations, the
energy near the saddle increases in the direction of all stable
eigenmodes)(r’}‘>0) and remains constant in the direction of
the Goldstone mode while it decreases in the direction of the
unstable mode. If the amplitude of this moglg is negative,

we assume that the contraction of the critical nucleus leads to

A/T
. o
- o

(54}

o LB SUALLE RN R RN

~

restoration of the initial statel;. When this amplitude is (c) £/,
positive, the critical nucleus expands leading to the forma-
tion of an independent pair of a kink and an antikink. FIG. 5. Eigenvalues of the perturbations of the critical nucleus

We now look at the number of kink-antikink pairs createdas a function ofF/V, for (a) r=-0.5, (b) r=0.5, and(c) r
per unit time and length using the approach of Brinkman=0.9.
[16], Landauer and Swansofd7], and Langer[18], (the
BLSL approach (see Ref[14]). We start with the Fokker- where j(u) and P(u) denote the current and distribution
Planck equation derived from EqR.15 and(2.21) probability, respectively. The equilibrium probability distri-
bution at the stateiy is

JP dx\ [ 8j(u(x))
EJFJ T =0, (3.19 P(uyn)=Pg exp(—E(up)/kgT), (3.21)
with where P, is the normalization factor.
The BLSL approach consists of a correction faqéu)
to the local equilibrium distribution probability
j(u)= 1% P+kgT oP 3.2
Jw==123)5q PrkeT| 55/ | (3.20 P(u)=g(u)exp(— E(u)/kgT). (3.22
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Substituting Eq(3.22 into Eq.(3.20 one obtains 70
59 60
j(u)y=—(kgT/vya) E) exd —E(u)/kgT]. (3.23 50
. : . Lf
Near the saddle, this expression can be rewritten as I .
30
. T 0k
ind7h=—(keT/ya)| 5 ex;HE(uN) =0
n £ »
+(ayl2) 2 x#nﬁ) / kBT}, (324 op L
A -10FE
PN WU HNNE YOO YUY SN S N ST WO T Y SO0 T T SO T A A M |
where we have used the quadratic approximation for the en 0 05 1 1.5 2 2.5
ergy E(u+4u). In the steady state, the calculation of the —
number of kink-antikink pairs per unit time and lengthis /N
similar to that performed by Btiker and Landauef14].
Using the same approach, E§.24) yields FIG. 6. Product of the eigenvalues of the stagalivided by the
o1 product of the eigenvalues of the nonlocalized eigenvalues of the
312 - critical nucleus vs E/V,) for a few values of.
in={5=] (0Nl i
n>1

sis will be checked indirectely from the average velocity of a
X(TIN)YHAEN kg T) YA Q)exp — AEN/KgT), particle in the chain which has the same behavioj\as
In order to relate this resulfj() to the physical parameter
(3.29 easily experimentally accessible, we will evaluate in Sec. IV
the average displacement velocity of a particle in the chain.
This question has been of interest in the theory of dislocation
for more than three decadg37].

wherejy is the nucleation rat@;ﬁ is the eigenvalue of the

nonuniform statep the number of bound states of the opera-
tor L(u(x)) and Q the product of the eigenvalues of the
nonlocalized eigenmodes of the critical nucleus. Using Bohr

and Sommerfeld’s approximation quantization r{de,36, IV. AVERAGE DISPLACEMENT VELOCITY
we obtain OF PARTICLES

oo At low temperatures and in the absence of fluctuations,
|n(Q2)=f (ps— pn)IN(NTHA(N/T), (3.26 the particles undergo small amplitude oscillations around

1 their equilibrium position. In a macroscopic viewpoint, the

. ) system is at equilibrium. A remarkable displacement of par-
whereps andpy are the density of state of the uniform state ticjes comes from its transition from one site to an adjacent
us and nonuniform statey, respectively, given by one, due to the passing of the soliton triggered by stochastic

. forces. The average velocity of this displacemgni/dt) is

dx[L(NT—-1)Y2]  (3.274  thus determined by the number of kinks and antikinks pass-

+

ps=(1/2m¢) f

—o ing the particle per unit time. Hence, this velocity is given by
and (aulaty=2m(2vjy)*?, 4.1
+ oo . . . .
_ _ 1 where v is the kink velocity. The solution sketched here
pn=(1/2mé) f_oo X LIMT = w(u())1* established in the SG chain case is still valid, even in this

(3.27p  model. Indeed, Eq(4.1) has been obtained by the assump-
tion that in the limit of heavy damping the kink-antikink
The factorQ is a function of the applied field8 and the collision is destructive. Now, the kinklike solution of the
shape parameter Its numerical evaluation is plotted in Fig. unperturbed equatiofR.4) interacts strongly with the anti-
6. From the spectrum df (u(x)) and the factoiQ, we are  kink (in the absence of perturbatiorif9], and this interac-
able to evaluate the nucleation rate of kink-antikink pairstion can lead to the total destruction of both kink and anti-
in- kink or to the formation of the breather. Then, the presence
From Egs.(3.295, one can make some commentsi) of perturbations should contribute to intensify this interac-
The nucleation ratgy of the kink-antikink pairs are tempera- tion. Consequently, any collisions between a kink and an
ture and deformable parameter dependéit,their expres- antikink in the limit of heavy damping is destructive.
sion[~T~ Y%exp(—AEy/kgT)] allows us to say that it is an Equation(4.1) shows that to find the average velocity of a
increasing function of temperature, afidl) due to math- particle of the chain, we have thus to find the kink velocity.
ematical difficulties, it is not possible to predict its behavior To evaluate this velocity, we now investigate the transition
as a function of, even if its numerical evaluation for a few connecting two minimaug(r,F) and ug(r,F)+27 of the
values ofr shows an increase with This numerical analy- potential V(u,r,F) of the traveling-wave formu(x+ut)
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FIG. 7. The driven kink mobility in unit ofug=(k/Vo)¥¥y
plotted as a function of the shape parameter FIG. 8. Increase of the propagational velocity in unitugf of
the driven kink with increase d¥/V for different values of .
=u(z) of Eg.(2.1) in the absence of stochastic forces where

v is the propagational velocity along u(z) verifies the velocity with which a particle advances is sensitiver tand
equation asr increaseg du/dt) increases. It is, however, difficult to
’ generalize this behavior for the mean velocity as a function
k(d?u/dz*) = yu(du/d2) —dV(u,r,F)/du=0. (42 4 pecause the results plotted in Fig0) refer to only a
few values ofr. But, it is physically possible to predict an

lution of this equation can move with any constant velocity'ncr(':'as‘.e In the_ mean velocity withsince, as shown in the_
between zero and the sound velocity on the chain. Howeveprecmmg section, the total energy need to nucleate a kink-

in the driven and damped chain, the figtdaccelerates the ant|!<|nk pair decrez_ise_s ds Increases. Then, it wou_ld be
initial motion of the kink which becomes uniform when the €asier to create a kink in the chain where the potential has a

kink acquires a final velocity determined by the balance flat bottom ¢—1) than that where the potential has a flat-
between the total energy loss due to dissipation in the pall-Op r—-1).

ticle picture and the total work done by the external field. For

small fields, the velocity is linear t&. In this case, the V- APPLICATION TO THE DIFFUSION OF HYDROGEN
soliton mobility can be derived in a most simple manner by ATOMS ON METALLIC SURFACES

[38]

In the absence of the external fis/ddand damping, any so-

The model described in Sec. Il has applications to the
roblem of surface diffusion of atoms and molecules ad-
vIF=p=2mkl(vEs), 4.3 Eorbed on metal surfaces. This problem is an odd one and

whereE, is the kink rest energy given by Eg.10. The still attracts_the attention of many physic?st; since the results
plot of u(r)is given in Fig. 7. The increase ofenhances the SO far obtained are not sans_faptory. This |s_due_to. the fact
kink mobility. To make this physical behavior more clear, that there are many contradictions or gaps in existing mea-
we find the velocity in the whole range oF , we select the surem'ent$40]. The re:;earch in thg field has bgen carried out
appropriated value ofyu corresponding to the transition analytically and experimentally with computational methods.

from one Peierls with zero initial velocity to an adjacent one _ Indeed, the model of Sec. Il may be viewed as a one-
with zero final velocity. The result fas(r ,F) is of the form dimensional chain of adatoms with a deformable potential

[39] V4(¢,r). This potential is produced by the interaction of an
adatom with substrate atoms, where the parametsould
account for the temperature dependance of the substrate or
for the geometry of the surface of the metallic substrate. For
wherev = (kVy) Y%y is a unit of velocity and the function instance, an estimate for the H/W adsystem yields— 0.3
g is defined by the curve plotted in Fig. 8. For small fields,[32]. Thus, we apply the results of the above analytical study
g is linear inF and increases monotonically with an increas-to estimate the kink mobility and its diffusion constdah-
ing field to a valuev* =vyg* at F=F,,. For example, for der the effects of thermal fluctuationst last, the mean dis-
r=-0.5,g*=2.01; forr=0.5,g*=3.2; andg*=1.19 for  placement velocity of a hydrogen atom on a Ru and W sub-
r=0 [14]. The stability of this driven kink has been well strates induced by the applied electrical fiek is
established39]. investigated.

We now have all the information necessary to calculate We assume that a unit cell contains only one adatom and
the velocity of particles in the chain in the presence of a fieldthat the lattice paramete(®, a, &5, and the damping coef-
F. The results plotted in Figs. 9 and 10 in units &(y) ficient y) do not depend on the temperature or the external
are based on a computational evaluation of E§®5 and field. We focus our attention on two adsystems H/W and
(4.1), and depend on reduced temperatarekg T/(Vok)Y?  H/Ru, where available data exist. The diffusion of hydrogen
and the shape parameterFigure 10 shows that the average atoms on various planes of W and Ru has been analyzed

v(r,F)=veg(F/Vq,r), (4.4
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FIG. 10. Variation of average velocity of particles withfor a
few values of shape parametewith (a) 7=0.2, (b) 7=0.3, which
increased=/V,, for different shape parameter

charge[32]. Taking for the lattice parametes=3 A, D
=2.35¢eV, £,=0.11 eV, m=1uma, e*=0.5, and r=
—0.3, which is comparable to that existing in W and Ru, and
Yo=6x10" s71, we obtain the following values of quanti-
ties:

In{c8yd~V,)

Vp=3.62x10"2eV A1, y=7.62x10°s! and

k=3.57x10" ' eV A.

IntE)

Here we have taken for the damping coefficiggtthe value
FIG. 9. Average velocity of particle&u/aty=(u) in a dimen- which is equal to that of the proton migration in hydrogen-

sionless unit as a function of the applied field: for different tem- bonded SO|Id$43.’44]' . .
peraturer=kgT/(kVo) Y2 with (a) r=—0.5, (b) r=0.5, and(c) r Before analyzing the average dlsplacement_velocny of hy-
=0.9. drogen atoms on Ru and W substrates, we first look at the

motion of the driven kink in the electrical fiel&E,. As

using the field ion shadowing meth$d0,41] and the laser shown in Sec. IL,E, should be less than the critical field
induced desorption-refilling methda0,42. The measure- E¢(r), which is an increasing function aof [see Fig. 1,
ments indicated that on these metallic substrates, the potemhere  E./Ec(r=0)=F/Vy with  E/(r=0)=2.35
tial barrier &5 varies between 0.10 and 0.50 eV. Also the X 10° V/m]. For the deformable parameter=—0.3, the
coupling constant or effective chargé transferred when an  critical electrical field has a valug. = 4.62x 10° V/m. If the
atom is displaced from one equilibrium site to the next onefield E, is very small Ec<E,), the driven kink velocity is
generally differs from the charge of the adatom particle. Inlinear with respect t&,. Hencep = uE,, whereu is a kink
the case of the diffusion of hydrogen atoms, the measuremobility. Figure 7 shows the variation @f as a function of
ments indicated tha* =0.1e—0.7e, wheree is the protonic r, where the characteristic mobility,, has a valueug
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=5.21x10 2 cm?s 1V 1, corresponding to the character-
istic diffusion coefficient Dy=4.26x10" % cn?s ™t at T
=298 K which follows from the modified Einstein relation
D= ukgT/(27e*). Forr=—0.3, the diffusion coefficient
has a valueD=3.4x10" % cn? s * comparable to that ob-
tained in H/'W and H/Ru adsystems since the experimental *
values show thatD varies from 10°cn?s ! to

-

L LR L LR

¢ B >(mfs)
S
8O NN @O

o b
to

T

e

1072 cn? s 1 [40]. 3
Also interesting in studying diffusion of hydrogen atoms 02F
on metallic surfaces is the mean displacement velocity of 01 F
hydrogen atoméd¢/dt) induced by the electrical field. Note ) S T ST
that (d¢/dt) = (al2m)(duldt); this is given by Eq.(4.1). 0 0z 04 06 03
Our numerical applications are carried out for Ru and W w0 e
substrates where we have taken the particular vakse a) €
—0.3. The results are shown in Fig. 11 for three values of 5

the temperatur@. Theses figures show th@i¢/at) rises by
several orders of magnitude in a small electrical field range
around a particular valuesee Fig. 10a)], so that the thresh-
old for energy localization could be reach. This suggests that
the process of surface diffusion could be initiated by an
energy-localization phenomenon, which is due to nonlinear
effects. This evidences the importance of collective motion
of adatomghydrogen atomsobserved at the time of experi-
mental studies of surface diffusi¢B2].

VI. CONCLUSION

9
10 E.e(V/m)

In this paper, we have studied the effect of a potential
Wit.h v_ariable shgpe on the nuc;leation _rate Of.. kink-antikink FIG. 11. Variation of(ad)/at)E([ﬁ) (m/s) as a function of the
pairs in a one-dimensional chain following thetE}ker and . electrical field for three values of the temperatui®; T=298 K,
ITanQauer theor:[l4]. The mean advantage of this potential (2) T=393K, (3) T=493 K: () for small field E.<E,), (b) for
lies in the fact that it can be used to describe a large amounge field €,<E,).
of physical systems. As a result, an appropriate choice of the
shape parametar enables us to employ a suitable form of o o ]
the shape close to the system under consideration such §Err- This investigation is limited to the fielé>nokgT
epitaxial or incommensurate structuf@2] in crystals and Where nucleation theory is valid. Heng designates théan-
other various systems. The nucleation rajehas been ob- ti)kink mean density. At last, the velocity of the driven kink
tained in the formQe 2En("F)’keT in agreement with the has been derived. As a consequence ofrtliependence of
results of Ref[45]. As in the SG case the prefactéris  the kink width[28], in response to an external field, the large
proportional toT ~ Y2 independent of the shape parameter kink (r—1) moves more rapidly than the short one—
however, it depends strongly on this parameter. Conse=1). This may be understood if we appeal to the fact that
quently, the nucleation rate of kink-antikink pairs not only the short kink interacts with the particles of the chain, while
depends on the external field, but also on the shape pararthe large kink does not see the partic[d§,47].
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